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● Typed data API maintainer, 

past Form API & Entty API
● Creator of many modules like

Rules, Entty API, Field collecton, …
● Track chair Drupal + Technology



Background

● Thunder-based mult-site project

● Typical publishing project:
– Editors publish content (artcles, recipes, …)
– Paragraphs, Media, Related content, Listngs, Mega-Menu, 

Search with autocompleton and facets

● With interactve elements:
– Votng, Comments



Goals

● Fast responses for logged-out site visitors via cached pages

● Long-lived caches by default
– Keep some caches when nodes are edited
– Allow editors to purge cache per page

● Good (cached) performance & UX for logged-in users 
(commentng, votes)

● Reasonable performance for uncached responses 



Architecture



Fast, cached page loads!

● CDN (Cloudfare) →  Varnish →  Drupal (Page cache)

● Ensure cached responses → Warm caches afer editng

● Enhance cached pages via Javascript



Uncached page render performance?

● Without caches, rendering easily can get slow

● Can decoupling help us to obtain beter performance?

→ Evaluate performance of two possible architectures:
– Traditonal approach
– Decoupled approach



Decoupled architecture

● SSR for SEO and fast page loads

● Nuxt.js (Ready-to-go universal Vue.js)

● Backend:
– Drupal + JSON API + Subrequests module



A prototype for comparison

● Contenta CMS example 

● Recipe page
– Main recipe node
– 4 related repices by category
– A main menu block 



Prototypes: Decoupled vs. Traditional

● Decoupled:
– Nuxt/vue.js example
– Improved with Subrequests

Main-Menu added as subrequest

● Contenta CMS frontend (material theme) of a recipe page 
("node view page"), unstyled. 



Simple benchmark

● Non-scientfc approach on notebook

● Measure page generaton tme in multple scenarios

● Repeated each scenarios multple tmes, take best result

● Goal: Get an idea on performance diferences



Comparison results: Cached response 
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→ Decoupled system stll renders, Drupal not.



Comparison results: Warmed site, no page-cache
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→ API requests are all uncached, Drupal has internal caches.



Comparison results: After editing the page
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→ Drupal invalidates render cache



Comparison results: After editing, loading another page
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→ Decoupled can keep page caches, Drupal not.



Comparison: Rendering partially cached pages
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Performance comparison takeaways

● Vue.js is faster rendering cached responses than Drupal 
delivering cached elements

● Unoptmized JSON API requests are rather slow with 
embedded enttes (~200ms) 
– JSON API without embedded enttes ~70ms
– comparable request including embedded enttes with Views 

REST plugin: ~110ms

→ Optmizaton needed



Traditional vs decoupled

● Decoupled setup misses cache of rendered pages

● Decoupled setup has performance advantages due to beter re-
use of partally cached pages, but..
– performance gains are not huge compared to dynamic page cache
– decoupled system requires more complex hostng & development

● Young projects pose a maintenance risk, future updates?

→ Go with traditonal approach & use dynamic page cache!



Caching with Drupal



The foundation: Drupal cache metadata

● Everywhere in the APIs

● Every rendered element provides it

● Metadata is aggregated during rendering

● Cache metadata:
– Cache context (by-user, by-path, …)
– Cache tags (“dependencies” - invalidate when X changes)
– Max-Age – 0 (no-cache), permanent 



Cached pages in Drupal

● (Internal) Page cache:  ~20ms 

● Dynamic page cache:  ~80ms

● Render cache
– Typically blocks & rendered enttes (view-modes)



Internal page cache

● Keeps an internal copy of cached pages (afer CDN, Varnish)

● Defaults to database backend, pluggable

● Invalidated based upon cache tags
– Possible with CDNs – but not on cheap plans
– Possible with Varnish – but not yet stable
– Risk of too frequent updates & bad cache usage

→ Need to avoid high-frequent cache invalidaton



Internal page cache: Keep it!

● Customize it to cache 7 days / 1h depending on page

● Do not invalidate automatcally
– except node/{ id }

● → Module: drupal.org/project/preserve_page_cache

● Custom purger for editors to invalidate by URL
– Invalidates page cache, varnish, CDN

● Database based for storage



Warm caches after editing

● drupal.org/project/prefetcher

● Run regularly on cron to warm caches

● Keeps track of pages and their cache lifetme

● Warms a certain number of pages per run



Dynamic page cache

● Caches authentcated + anonymous pages

● Caches pages minus personalized parts
– lazy-builders render un-cached bits

● Auto-placeholdering auto-creates lazy-builders for high-
cardinality cache-contexts
– user, session



Automatic placeholdering

● Confgurable via service parameter in services.yml

● Dynamic page cache only applies to elements which are 
excluded by this confguraton! 

 renderer.config
    auto_placeholder_conditionsg
      max-aieg 0
      contextsg ['session', 'user']
      taisg []



Dynamic page cache – Room for improvement

● If auto-placeholdering fails, dynamic page cache fails!

● And it happened all the tme for editors!
– #2949457: Toolbar's renderPlain() is incompatble with dynamic 

page cache [needs review]
– #2899392: user_hook_toolbar() makes all pages uncacheable 

[done, 8.5]
– #2914110: Shortcut hook_toolbar implementaton makes all 

pages uncacheable [needs work]

● Can happen when adding features → Add tests!



Dynamic page cache – Room for improvements (2)

● Automatc per-permission-hash cache context
– Helps preventng permission issues
– But – it’s bad for cache-reuse across roles
– Doubles page cache of anonymous pages

● Idea:
– Remove permission cache-context (& take care!)

→ Beter cache-usage
→ Anonymous page loads warms cache for authentcated 
pages



Render cache

● Typically blocks & rendered enttes (view-modes)

● Mostly
– Dynamic page cache is already by URL
– Render cache elements duplicate dynamic page cache!

● Stll it’s useful
– For lazy-built elements
– For speeding up “uncached” page generaton tme



Render cache: Tune it!

● Ofen many, many items end up in the cache
– Per user, per URL (query), per role
– Usually does not ft into memcache/Redis
– Since 8.4.x – limited to 5.000 items in database

→ See htps://www.drupal.org/node/2891281

→ Inspect your cache items
→ Disable unwanted items via d.o./project/cache_split
→ Remove all per-URL caches



Cache invalidation via cache tags

● Drupal’s cache metadata is a sensible default

● But the default is ofen to generic

– list_node, list_taxonomy

● Every page depends on list_node 

→ every edit, invalidates dynamic page cache of every page!



Customize cache metadata on rendered elements

● Remove too generic cache tags (list_node) & context

● Add new cache tags ftng to use-cases
– node.feld_channel

● cache_tools – Sanitze cache metadata of blocks & Views
– Strip cache contexts (route, url.query_args)

● htps://www.drupal.org/project/cache_tools



Test coverage for cache metadata!

● Actvate X-Drupal-Cache-Contexts for testng

● Add a test per page to verify cache metadata
– Test unwanted tags, context are not set
– Test changes appear as required

● Module “region_renderer” to render regions and test output
– drupal.org/project/region_renderer
– Take care of headers and footer to be cached!
– Avoid useless cache context like url, route.menu_actve_trails



Per-user pages & caching 



Goal: Leverage caches as far as possible

● Pages are mostly same for all users

● Some elements (votng, comments, …) difer

→ Fetch cached pages & adapt!

→ Use Javascript to enhance cached responses.



How to fetch user-dependent elements?

● Leverage BigPipe & streamed responses

● Lazy-load content via ajax requests



BigPipe – The solution?

● Drupal delivers the cached response frst

● HTTP response is streamed

● Lazy-builders render the rest & replace the elements in the 
dom



Problems with BigPipe

● It’s hard to control what’s streamed
– Cache metadata & available lazy-builders decide
– Not obvious and hard to inspect why something is streamed or 

not

● Frontend developers are not in control

● Depends on jQuery

● Does not work with externally cached pages



Lazy-load via Ajax requests – use Drupal.ajax ?

● Again: Frontend developers cannot control the process

● No caching by default (POST)

● Ajax assets plus solves caching

● Rather complex, hard-to introspect



Lazy-load via custom Ajax requests

● Frontend issues custom Ajax requests as needed
→ Developers can easily improve UX

● Backend developers provide API responses
→ Easy to control caching

● Clear interface, easy to control & debug



Apply progressive decoupling

● Use Vue.js to render elements

● Fetch necessary data from custom API endpoints

● Apply custom caching to custom API endpoints that can vary

→ Faster inital render tme

→ Improve cache usage!



Improve cache lifetime!

● Keep main pages as long cache-able as possible

● Identfy high-frequent changing elements that can be lazy-
loaded

→ Mega-Menu content (Latest artcles, …)

→ Comments

→ Social media counts, Latest prices from amazon 
products, ...



Frontend performance



Frontend principles

● Optmize on frst render tme (beter UX!)

● Keep HTTP requests down
– Inline required SVG icons, inline critcal fonts
– Lazy-load images

● Stay in control – no Drupal Javascript, Ajax, …

→ Loading animatons, ...

● Use modern stuf: Vue.js, ES6, no jQuery

→ Leverage modern frontend toolchain (Webpack)



Optimize for first render

● Keep only critcal CSS and Javascript in main builds

● Lazy-load additonal frontend assets when needed

● Leverage webpack code-splitng

→ Asynchronous Vue.js components lazy-load chunks



Webpack chunks & caching

● Drupal’s JS/CSS aggregaton is great for cached pages

● Webpack chunks bypass it

● Situatons with cached pages requiring old chunks may arise

→ Take care to keep old chunks around

→ Copy chunks to Drupal’s JS and use .htaccess to fallback 
to deliver else missing chunks



Performance Testing



Sitespeed.io

● Focused on frontend performance

● Provides docker container with chrome & frefox

● Analyzes rendering and provides
– Metrics (Backend-Time, First Visual Paint, Last Visual Change)
– Suggestons for improvements (like lighthouse)
– Records videos of the rendering process
– Waterfall of requests



Sitespeed.io integration

● Test all page variants

● Tested pages without page cache

● Integrate in CI workfow to automatcally generate the 
report

● Defne performance budget

→ fail if it is not met



Example report



Use Behat to verify Caching requirements

● Add behat feature per page-type
– Test cache headers (Page Cache, Dynamic Page Cache)
– Test Drupal cache metadata
– Ensure no jQuery is added in

● Test header / footer region responses

● Test cachability of API responses



Takeaways



Takeaway

● Caching-strategy must be planned from the beginning

● Caching / Freshness requirements must be clear

● Drupal has great caching optons, but it could be easier to 
use

● Improve Drupal’s cache metadata

● Use testng to avoid accidental regressions



Thank you!

● Questons?
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