
www.drupaleurope.org

Building high-performance
Thunder sites

by Wolfgang Ziegler

Wolfgang Ziegler

CEO/CTO drunomics GmbH

@the_real_fago

img

● Typed data API maintainer,

past Form API & Entty API
● Creator of many modules like

Rules, Entty API, Field collecton, …
● Track chair Drupal + Technology

Background

● Thunder-based mult-site project

● Typical publishing project:
– Editors publish content (artcles, recipes, …)
– Paragraphs, Media, Related content, Listngs, Mega-Menu,

Search with autocompleton and facets

● With interactve elements:
– Votng, Comments

Goals

● Fast responses for logged-out site visitors via cached pages

● Long-lived caches by default
– Keep some caches when nodes are edited
– Allow editors to purge cache per page

● Good (cached) performance & UX for logged-in users
(commentng, votes)

● Reasonable performance for uncached responses

Architecture

Fast, cached page loads!

● CDN (Cloudfare) → Varnish → Drupal (Page cache)

● Ensure cached responses → Warm caches afer editng

● Enhance cached pages via Javascript

Uncached page render performance?

● Without caches, rendering easily can get slow

● Can decoupling help us to obtain beter performance?

→ Evaluate performance of two possible architectures:
– Traditonal approach
– Decoupled approach

Decoupled architecture

● SSR for SEO and fast page loads

● Nuxt.js (Ready-to-go universal Vue.js)

● Backend:
– Drupal + JSON API + Subrequests module

A prototype for comparison

● Contenta CMS example

● Recipe page
– Main recipe node
– 4 related repices by category
– A main menu block

Prototypes: Decoupled vs. Traditional

● Decoupled:
– Nuxt/vue.js example
– Improved with Subrequests

Main-Menu added as subrequest

● Contenta CMS frontend (material theme) of a recipe page
("node view page"), unstyled.

Simple benchmark

● Non-scientfc approach on notebook

● Measure page generaton tme in multple scenarios

● Repeated each scenarios multple tmes, take best result

● Goal: Get an idea on performance diferences

Comparison results: Cached response

Request tme [ms]
0

5

10

15

20

25

30

35

40

Traditonal
Decoupled

→ Decoupled system stll renders, Drupal not.

Comparison results: Warmed site, no page-cache

Request tme [ms]
0

100

200

300

400

500

600

Traditonal
Decoupled

→ API requests are all uncached, Drupal has internal caches.

Comparison results: After editing the page

Request tme [ms]
0

50

100

150

200

250

300

350

400

450

Traditonal
Decoupled

→ Drupal invalidates render cache

Comparison results: After editing, loading another page

Request tme [ms]
0

50

100

150

200

250

Traditonal
Decoupled

→ Decoupled can keep page caches, Drupal not.

Comparison: Rendering partially cached pages

Request tme [ms]
0

10

20

30

40

50

60

70

80

90

100

Traditonal with
render cache

dynamic page cache

Decoupled with page
cache

→ Decoupled is fasted when combining cached chunks

Performance comparison takeaways

● Vue.js is faster rendering cached responses than Drupal
delivering cached elements

● Unoptmized JSON API requests are rather slow with
embedded enttes (~200ms)
– JSON API without embedded enttes ~70ms
– comparable request including embedded enttes with Views

REST plugin: ~110ms

→ Optmizaton needed

Traditional vs decoupled

● Decoupled setup misses cache of rendered pages

● Decoupled setup has performance advantages due to beter re-
use of partally cached pages, but..
– performance gains are not huge compared to dynamic page cache
– decoupled system requires more complex hostng & development

● Young projects pose a maintenance risk, future updates?

→ Go with traditonal approach & use dynamic page cache!

Caching with Drupal

The foundation: Drupal cache metadata

● Everywhere in the APIs

● Every rendered element provides it

● Metadata is aggregated during rendering

● Cache metadata:
– Cache context (by-user, by-path, …)
– Cache tags (“dependencies” - invalidate when X changes)
– Max-Age – 0 (no-cache), permanent

Cached pages in Drupal

● (Internal) Page cache: ~20ms

● Dynamic page cache: ~80ms

● Render cache
– Typically blocks & rendered enttes (view-modes)

Internal page cache

● Keeps an internal copy of cached pages (afer CDN, Varnish)

● Defaults to database backend, pluggable

● Invalidated based upon cache tags
– Possible with CDNs – but not on cheap plans
– Possible with Varnish – but not yet stable
– Risk of too frequent updates & bad cache usage

→ Need to avoid high-frequent cache invalidaton

Internal page cache: Keep it!

● Customize it to cache 7 days / 1h depending on page

● Do not invalidate automatcally
– except node/{ id }

● → Module: drupal.org/project/preserve_page_cache

● Custom purger for editors to invalidate by URL
– Invalidates page cache, varnish, CDN

● Database based for storage

Warm caches after editing

● drupal.org/project/prefetcher

● Run regularly on cron to warm caches

● Keeps track of pages and their cache lifetme

● Warms a certain number of pages per run

Dynamic page cache

● Caches authentcated + anonymous pages

● Caches pages minus personalized parts
– lazy-builders render un-cached bits

● Auto-placeholdering auto-creates lazy-builders for high-
cardinality cache-contexts
– user, session

Automatic placeholdering

● Confgurable via service parameter in services.yml

● Dynamic page cache only applies to elements which are
excluded by this confguraton!

 renderer.config
 auto_placeholder_conditionsg
 max-aieg 0
 contextsg ['session', 'user']
 taisg []

Dynamic page cache – Room for improvement

● If auto-placeholdering fails, dynamic page cache fails!

● And it happened all the tme for editors!
– #2949457: Toolbar's renderPlain() is incompatble with dynamic

page cache [needs review]
– #2899392: user_hook_toolbar() makes all pages uncacheable

[done, 8.5]
– #2914110: Shortcut hook_toolbar implementaton makes all

pages uncacheable [needs work]

● Can happen when adding features → Add tests!

Dynamic page cache – Room for improvements (2)

● Automatc per-permission-hash cache context
– Helps preventng permission issues
– But – it’s bad for cache-reuse across roles
– Doubles page cache of anonymous pages

● Idea:
– Remove permission cache-context (& take care!)

→ Beter cache-usage
→ Anonymous page loads warms cache for authentcated
pages

Render cache

● Typically blocks & rendered enttes (view-modes)

● Mostly
– Dynamic page cache is already by URL
– Render cache elements duplicate dynamic page cache!

● Stll it’s useful
– For lazy-built elements
– For speeding up “uncached” page generaton tme

Render cache: Tune it!

● Ofen many, many items end up in the cache
– Per user, per URL (query), per role
– Usually does not ft into memcache/Redis
– Since 8.4.x – limited to 5.000 items in database

→ See htps://www.drupal.org/node/2891281

→ Inspect your cache items
→ Disable unwanted items via d.o./project/cache_split
→ Remove all per-URL caches

Cache invalidation via cache tags

● Drupal’s cache metadata is a sensible default

● But the default is ofen to generic

– list_node, list_taxonomy

● Every page depends on list_node

→ every edit, invalidates dynamic page cache of every page!

Customize cache metadata on rendered elements

● Remove too generic cache tags (list_node) & context

● Add new cache tags ftng to use-cases
– node.feld_channel

● cache_tools – Sanitze cache metadata of blocks & Views
– Strip cache contexts (route, url.query_args)

● htps://www.drupal.org/project/cache_tools

Test coverage for cache metadata!

● Actvate X-Drupal-Cache-Contexts for testng

● Add a test per page to verify cache metadata
– Test unwanted tags, context are not set
– Test changes appear as required

● Module “region_renderer” to render regions and test output
– drupal.org/project/region_renderer
– Take care of headers and footer to be cached!
– Avoid useless cache context like url, route.menu_actve_trails

Per-user pages & caching

Goal: Leverage caches as far as possible

● Pages are mostly same for all users

● Some elements (votng, comments, …) difer

→ Fetch cached pages & adapt!

→ Use Javascript to enhance cached responses.

How to fetch user-dependent elements?

● Leverage BigPipe & streamed responses

● Lazy-load content via ajax requests

BigPipe – The solution?

● Drupal delivers the cached response frst

● HTTP response is streamed

● Lazy-builders render the rest & replace the elements in the
dom

Problems with BigPipe

● It’s hard to control what’s streamed
– Cache metadata & available lazy-builders decide
– Not obvious and hard to inspect why something is streamed or

not

● Frontend developers are not in control

● Depends on jQuery

● Does not work with externally cached pages

Lazy-load via Ajax requests – use Drupal.ajax ?

● Again: Frontend developers cannot control the process

● No caching by default (POST)

● Ajax assets plus solves caching

● Rather complex, hard-to introspect

Lazy-load via custom Ajax requests

● Frontend issues custom Ajax requests as needed
→ Developers can easily improve UX

● Backend developers provide API responses
→ Easy to control caching

● Clear interface, easy to control & debug

Apply progressive decoupling

● Use Vue.js to render elements

● Fetch necessary data from custom API endpoints

● Apply custom caching to custom API endpoints that can vary

→ Faster inital render tme

→ Improve cache usage!

Improve cache lifetime!

● Keep main pages as long cache-able as possible

● Identfy high-frequent changing elements that can be lazy-
loaded

→ Mega-Menu content (Latest artcles, …)

→ Comments

→ Social media counts, Latest prices from amazon
products, ...

Frontend performance

Frontend principles

● Optmize on frst render tme (beter UX!)

● Keep HTTP requests down
– Inline required SVG icons, inline critcal fonts
– Lazy-load images

● Stay in control – no Drupal Javascript, Ajax, …

→ Loading animatons, ...

● Use modern stuf: Vue.js, ES6, no jQuery

→ Leverage modern frontend toolchain (Webpack)

Optimize for first render

● Keep only critcal CSS and Javascript in main builds

● Lazy-load additonal frontend assets when needed

● Leverage webpack code-splitng

→ Asynchronous Vue.js components lazy-load chunks

Webpack chunks & caching

● Drupal’s JS/CSS aggregaton is great for cached pages

● Webpack chunks bypass it

● Situatons with cached pages requiring old chunks may arise

→ Take care to keep old chunks around

→ Copy chunks to Drupal’s JS and use .htaccess to fallback
to deliver else missing chunks

Performance Testing

Sitespeed.io

● Focused on frontend performance

● Provides docker container with chrome & frefox

● Analyzes rendering and provides
– Metrics (Backend-Time, First Visual Paint, Last Visual Change)
– Suggestons for improvements (like lighthouse)
– Records videos of the rendering process
– Waterfall of requests

Sitespeed.io integration

● Test all page variants

● Tested pages without page cache

● Integrate in CI workfow to automatcally generate the
report

● Defne performance budget

→ fail if it is not met

Example report

Use Behat to verify Caching requirements

● Add behat feature per page-type
– Test cache headers (Page Cache, Dynamic Page Cache)
– Test Drupal cache metadata
– Ensure no jQuery is added in

● Test header / footer region responses

● Test cachability of API responses

Takeaways

Takeaway

● Caching-strategy must be planned from the beginning

● Caching / Freshness requirements must be clear

● Drupal has great caching optons, but it could be easier to
use

● Improve Drupal’s cache metadata

● Use testng to avoid accidental regressions

Thank you!

● Questons?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55

